Nome's Child Safety Seat

Group 1 Matt Bivona – EE Michael Covitt – CpE Jason Nagin – CpE Donnell Robinson – EE

Sponsored By: The Boeing Company Evenflo Company Mark Calabrese Matt Civitello Amy Hesse Kimberly Renk

Contributors and Sponsors

Name / Company	Field of Study / Description
The Boeing Company	Approved Funding
Evenflo Company	Donated Child Car Seats
Mark Calabrese	Sponsor and Customer
Matt Civitello	Physical Therapist
Amy Hesse	Day Care Specialist
Kimberly Renk	Psychological Specialist

The Problem

- Since 1998 over 700 children have died as a result of being left in their car seats by either someone who will be 'right back' or someone who was sleep deprived, stressed out, or in a hurry. That's about 40 per year.
- A vehicle's temperature can increase on average by 6.8 degrees (F) per 10 minutes on a hot day.
- The vehicle quickly becomes a deadly environment for anyone locked inside.

-NHTSA Child Seat Research. (n.d.). Retrieved July 20, 2015, from http://www.nhtsa.gov/Research/Child+Seat+Research

The Solution

1: Car Insert

2: Mobile Device 3: Vehicle Interface

Objectives and Goals

- Create a secure and reliable safety system to prevent the loss of children's lives.
- A mobile insert device that can be quickly and easily installed in multiple vehicles and child car seats.
- A three element alarm system that will alert the owner via their mobile device.
- If no intervention is detected the device will assume control of the vehicle and take actions to change the temperature to a safe range.

Main Specifications

Component	Parameter	Specification
Microcontroller	Power Usage	Maximum of 0.1 A
Bluetooth	Range	Minimum of 3 m Maximum of 10 m
Load Sensor	Sensitivity	Up to 25 lbs
Temperature Sensor	Coverage	0°C- 40°C
Battery	Nominal Voltage	Minimum of 3 V
Solar panel	Power Output	Minimum of 3 V

Hardware

Hardware Block Diagram

Microcontrollers

	Msp430	Tiva C	AtMega	PSOC4 BLE	NRF51822
Processor	16-bit RISC	Cortex M4	atMega2560	Cortex M0	Cortex M0
Speed	25Mhz	120Mhz	16Mhz	48 Mhz	16 Mhz
Memory	4KB	256KB	256KB	128KB	256KB
Power	2.2 V	0-4V	5V	5V	3.6
Comm Protocol	UART	UART/USB	SPI/Uart/I2C	SPI/I2C/UAR T/Bluetooth	SPI/I2C/UAR T/Bluetooth
Low Power State	Yes	Yes	Yes	Yes	Yes

Microcontroller

- The Microcontroller we decided to implement in our project is the PSOC 4 BLE (CY8C4247LQI-BL483).
- We chose this because of the low power applications.
- Has a full development board that we can use to test while building and designing the PCB and subsystems.
- Price : \$6.53

Microcontroller Continued

Features

- ARM Cortex M0
 - 48 MHz
- 128KB Flash Memory
- 18.7 mA
 - Can go as low as 150 nA in sleep mode
- 16 KB of SRAM
- 36 Programmable GPIOs
- Supports I2C
- Supports UART

Category	Specification
Dimensions	Maximum 8 x 8 x 4 inches (L x W x H)
Power Usage	Maximum of 0.1 A
Power States	Normal and Low Power
Processor Speed	Minimum of 8 MHz
RAM Memory	Minimum of 128 KB
ROM Memory	Minimum of 4 KB

Bluetooth

- We will be using Bluetooth to connect our system with the vehicle interface in order to control the vehicles air conditioner and windows.
- Bluetooth will also be used to determine when the user is too far away from the child safety seat.
 - This will allow us to notify the user that the child is left in the seat if all to proper conditions are met.
- Features
 - $\circ~$ 2.4 GHz RF transmitter with 50 Ω antenna drive
 - Use about 16 mA while Bluetooth device is on

Why Load Sensor?

Load Sensor

- Flexiforce pressure sensor
- ranges from 0-25lbs
 - 5 microseconds response time
- \blacktriangleright ±3% linearity error for the volt per force from a 0 to 50% load
- Force reading of sensor changes .36% per degree of temperature
- 1 inch diameter head

Condition	Details
1	Be able to sense weights from 0– 25 lbs
2	Compact and flexible Size to fit the seat lining
3	Cost effective

Load Sensor Continued

- Supply Voltages has to be constant
- Sensor Resistance R_s with on load > 5M Ω
- Max Current 2.5 mA

Temperature Sensor Comparisons

	LM 35	TMP112	MAX1617
Operating Temperature	–55°C to +150° C	-40°C to +125°C	–55°C to +125°C
Output Interface (Digital/Analog)	Analog Output	Digital Output: SMBus, Two-Wire and IC Interface Compatibility	Digital Output: SMBus, Two-Wire Serial Interface
Supply Range (VDD Range)	1V to 6V	1.4V to 3.6V	3V to 5.5V
Temperature Accuracy	± .2°C	±.5°C	±2°C

Temperature Sensor

Specification	Value
Measurement	Temperature (°C)
Accuracy	± 3°C
Total Lifespan	5 years
Max Operating Voltage	5 V
Max Operating Current	10 mA
Temperature Range	0°C- 40°C

Temperature Sensor Continued

- Texas Instruments TMP112
- Operates between 40 to 125°C
- ▶ uses a SMBus
 - Two-wire and IC compatibility
- Accuracy from ±.5°C to ±.17°C
- The TMP112 has a chance of increased temperature error at low and high temperatures causing the output voltage vs Temperature to saturate due to the low resolution to detect the change in output voltage per degree Celsius

From Texas Instruments Spec Sheet

Power System Overview

- Once the system is active from load sensor the microcontroller communicates with the charge controller for state of charge of battery.
- The charge controller will check to make sure the battery is above 20% power capacity threshold and will charge the battery via the solar panel.
- The battery will power the MCU and loads of the temperature sensor and load sensor

Battery Sensor Comparison

	APC RBC35	WKA12-8F2	DURA6-10F	LIP 1522
Weight	2.9 lbs	5.6 lbs	3.9 lbs	1.5 lbs
Voltage/Amp Hours	12V/3.5AH	12V/8AH	6V/10AH	3.7/1000 mAh
Time to Charge	11.45 hours	12.25 hours	12.5 hours	6 hours
Product Dimensions	2.6 x 2.28 x 5.28 inches	8.5 x 6 x 2.3 inches	8.5 x 7 x 3.3 inches	2.11 x 1.35 x .32 inches

Lithium Ion Battery

- High Power density and low self discharge
- No memory effect also known as voltage depression.
- High Charge Efficiency(80–90%)
- ► 3.7V
- ▶ 1750 mAh

Solar Panel Specifications

- Peak Power Voltage: 6V
- Peak Power Current: 100mA
- ▶ VOC: 7.2V
- ▶ ISC: 110mA
- Dimensions: 100 mm(3.94 in) diameter
- Weight: 1.3 lbs.
- Allows for a charge time of 6 hours on 3.7V battery.

Solar Panel

- No light Induced degradation
- Designed to charge 3.6V to 4.2V batteries
- Lightweight
- Easy to install
- Cost effective

Voltage <= .74V	The micro controller will determine the system is in a short circuit condition and the load is disconnected immediately to begin charging of the battery via the solar panel.
Voltage <1V	The micro controller turns on the battery charging and the load is disconnected until a charge of 2.96 V is reached to extend the batteries life cycle
Voltage > 3.7V	The battery is now in the overcharging state and the micro controller will turn off the battery charging between the solar panel and battery via the charge controller.
Voltage >= 2.96V	The battery is above the 80% threshold of charge capacity and will charge slowly until the optimal 3.7V is reached or comes close to it.

PCB Creation

Software

Software Development

Android Application

	Details
Environment	Android Studio
Version	API 15: Android 4.0.3 (IceCreamSandwich)
Accessibility	Applies to 90.4% of devices active on the Google Play Store

Application Features

- Main interaction device
- Easily configured to the device
- Trigger for the alarms
- Learn about safe temperatures

Administrative Content

Work Distribution

Name	PCB Design	Part Comparisons	MCU Programming	Android Application	Testing
Matt Bivona	+	—			+
Michael Covitt			_	+	—
Jason Nagin			+	_	+
Donnell Robinson	—	+			—
	+ Primary	,		— Secondary	

Budget and Financing

Description	Component Name/Number	Quantity	Unit Price (USD)	Subtotal Price (USD)
Microcontroller with BLE	CY8CKIT-042-BLE	2	48.88	97.76
Battery	GT-i9250 EB-L1F2HVU	1	14.87	14.87
Battery Charger	<u>BQ25504</u>	1	5.51	5.51
Temperature Sensor	<u>TMP112</u>	1	3.12	3.12
Load Sensor	Flexiforce 25 Pounds	1	21.95	21.95
Solar Panels	6.0V 100MA Round Solar Cell	2	7.95	15.9
LED	LTST-C191KGKT	3	0.3	0.9
Pair Button	D6R90 F2 LFS	1	1.09	1.09
OBD Link	OBDLink MX Bluetooth	1	100.91	100.91
Voltage Regulator	TPS62203	1	1.9	1.9
PCB	Printed Circuit Board	3	10.00	30.00
Board Components	Wires, Connectors, etc.	3	45.06	135.02
			Total Cost:	428.93

Estimated Single Unit Cost

Component	Quantity	Price	Sub Total
Bluetooth LE Adapter	1	5.99	5.99
Battery	1	14.87	14.87
Battery Charger	1	5.51	5.51
Temperature Sensor	1	3.12	3.12
Load Sensor	1	21.95	21.95
Solar Panels	2	7.95	15.9
LED	3	0.3	0.9
Pair Button	1	1.09	1.09
OBD Link	1	100.91	100.91
Voltage Regulator	1	1.9	1.9
Circuit Board	1	10	10
Board Components	1	15	15
	-	Total Cost	197.14

lssues

- 1. No legitimate way to test cold temperature triggers
- 2. No Ford and GM vehicle's unencrypted available.
 - Team had to replicate a car
- 3. Wedge was found to be illegal past a certain height
 - Team decided to attach a box to the back

Questions?

Demonstration